16 research outputs found

    Spectrometer for Hard X-Ray Free Electron Laser Based on Diffraction Focusing

    Full text link
    X-ray free electron lasers (XFELs) generate sequences of ultra-short, spatially coherent pulses of x-ray radiation. We propose the diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E≈2×10−6\Delta E/E\approx 2\times 10^{-6}. This is much better than for most modern x-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from the metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. We show that the DFS can be used in a wide energy range from 5 keV to 20 keV.Comment: 9 pages, 8 figures, 2 table

    Spatial properties of π−π\pi-\pi conjugated network in semicrystalline polymer thin films studied by intensity x-ray cross-correlation functions

    Full text link
    We present results of x-ray study of spatial properties of π−π\pi-\pi conjugated networks in polymer thin films. We applied the x-ray cross-correlation analysis to x-ray scattering data from blends of poly(3-hexylthiophene) (P3HT) and gold nanoparticles. The Fourier spectra of the intensity cross-correlation functions for different films contain non-zero components of orders n=2,4n=2,4 and 66 measuring the degree of structural order in the system.Comment: 6 pages, 2 figures, Proceedings ICXOM22 Conference, 2-6 September 2013, Hamburg, German

    Characterization of Spatial Coherence of Synchrotron Radiation with Non-Redundant Arrays of Apertures

    Full text link
    We present a method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern. The technique is based on scattering from non-redundant arrays (NRA) of slits and records the degree of spatial coherence at several relative separations from one to 15 microns, simultaneously. Using NRAs we measured the transverse coherence of the X-ray beam at the XUV X-ray beamline P04 of the PETRA III synchrotron storage ring as a function of different beam parameters. To verify the results obtained with the NRAs additional Young's double pinhole experiments were conducted and show good agreement.Comment: 15 pages, 6 figures, 2 tables, 42 reference

    Diffraction based Hanbury Brown and Twiss interferometry performed at a hard x-ray free-electron laser

    Full text link
    We demonstrate experimentally Hanbury Brown and Twiss (HBT) interferometry at a hard X-ray Free Electron Laser (XFEL) on a sample diffraction patterns. This is different from the traditional approach when HBT interferometry requires direct beam measurements in absence of the sample. HBT analysis was carried out on the Bragg peaks from the colloidal crystals measured at Linac Coherent Light Source (LCLS). We observed high degree (80%) spatial coherence of the full beam and the pulse duration of the monochromatized beam on the order of 11 fs that is significantly shorter than expected from the electron bunch measurements.Comment: 32 pages, 10 figures, 2 table

    Revealing three-dimensional structure of individual colloidal crystal grain by coherent x-ray diffractive imaging

    Get PDF
    We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. As a result, an exact stacking sequence of hexagonal close-packed layers including planar and linear defects were identified.Comment: 8 pages, 5 figure

    X-ray cross-correlation analysis of liquid crystal membranes in the vicinity of the hexatic-smectic phase transition

    No full text
    We present an x-ray study of liquid crystal membranes in the vicinity of the hexatic-smectic phase transitionby means of angular x-ray cross-correlation analysis. By applying two-point angular-intensity cross-correlation functions to the measured series of diffraction patterns the parameters of bond-orientational (BO) order in hexatic phase were directly determined. The temperature dependence of the positional correlation lengths was analyzed as well. The obtained correlation lengths show larger values for the higher-order Fourier components of BO order. These findings indicate a strong coupling between BO and positional order

    Local structure of semicrystalline P3HT films probed by nanofocused coherent X-rays

    No full text
    The hidden structural properties of semicrystalline polymer films are revealed by nanofocused X-ray scattering studies. X-ray cross-correlation analysis (XCCA) is employed to diffraction patterns from blends of poly(3-hexylthiophene) (P3HT) with gold nanoparticles (AuNPs). Spatially resolved maps of orientational distribution of crystalline domains allow us to distinguish sample regions of predominant face-on morphology, with a continuous transition to edge-on morphology. The average size of crystalline domains was determined to be of the order of 10 nm. As compared to pristine P3HT film, the P3HT/AuNPs blend is characterized by substantial ordering of crystalline domains, which can be induced by Au nanoparticles. The inhomogeneous structure of the polymer film is clearly visualized on the spatially resolved nanoscale 2D maps obtained using XCCA. Our results suggest that the observed changes of the polymer matrix within crystalline regions can be attributed to nanoconfinement in the presence of gold nanoparticles. This journal i

    Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser

    No full text
    X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-rayradiation with femtosecond pulse duration. Currently, they are widely used in biology and materialscience. Knowledge of the XFEL statistical properties during an experiment may be vitally importantfor the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brownand Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us todetermine the XFEL statistical properties directly from the Bragg peaks originating from colloidalcrystals. This approach is different from the traditional one when HBT interferometry is performedin the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatialcoherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds forthe monochromatized beam, which is significantly shorter than expected from the electron bunchmeasurements
    corecore